When [tex]n=1[/tex],
[tex]10^{2\cdot1 - 1} + 1 = 10^1 + 1 = 11[/tex]
which is of course divisible by 11.
Assume this holds for [tex]n=k[/tex], that
[tex]11 \mid 10^{2k - 1} + 1[/tex]
In other words,
[tex]10^{2k - 1} + 1 = 11\ell[/tex]
for some integer [tex]\ell[/tex].
Use this to show the claim is true for [tex]n=k+1[/tex].
[tex]10^{2(k+1) - 1} + 1 = 10^{2k + 1} + 1 \\\\ ~~~~~~~~~~~~~~~~~~~~ = 10^{2k+1} + \left(10^{2k-1} + 10^{2k-1}\right) + 1 \\\\ ~~~~~~~~~~~~~~~~~~~~ = \left(10^{2k+1} - 10^{2k-1}\right) + \left(10^{2k-1} + 1\right) \\\\ ~~~~~~~~~~~~~~~~~~~~ = 10^{2k-1} \left(10^2 - 1\right) + 11\ell \\\\ ~~~~~~~~~~~~~~~~~~~~ = 99\times10^{2k-1} + 11\ell \\\\ ~~~~~~~~~~~~~~~~~~~~ = 11\left(9\times10^{2k-1} + \ell\right)[/tex]
which is indeed divisible by 11. QED
On the off-chance you meant [tex]10^{2^n-1}+1[/tex], notice that [tex]2n-1[/tex] is odd for any integer [tex]n[/tex]. Similarly [tex]2^n-1[/tex] is odd for all [tex]n[/tex], so the above proof actually proves this automatically.