Respuesta :

[tex] {\qquad\qquad\huge\underline{{\sf Answer}}} [/tex]

Let's solve ~

Equation of directrix is : y = 1, so we can say that it's a parabola of form : -

[tex]\qquad \sf  \dashrightarrow \: (x - h) {}^{2} = 4a(y - k)[/tex]

  • h = x - coordinate of focus = -4

  • k = y - coordinate of focus = 5

  • a = half the perpendicular distance between directrix and focus = 1/2(5 - 1) = 1/2(4) = 2

and since the focus is above the directrix, it's a parabola with upward opening.

[tex]\qquad \sf  \dashrightarrow \: (x - ( - 4)) {}^{2} = 4(2)(y - 5)[/tex]

[tex]\qquad \sf  \dashrightarrow \: (x + 4) {}^{2} = 8(y - 5)[/tex]

[tex]\qquad \sf  \dashrightarrow \: {x}^{2} + 8x + 16 = 8y - 40[/tex]

[tex]\qquad \sf  \dashrightarrow \: 8y = {x}^{2} + 8x + 56[/tex]

[tex]\qquad \sf  \dashrightarrow \: y = \cfrac{1}{8} {x}^{2} + x + 7[/tex]

Directrix

  • y=1

Focus

  • (h,k)=(-4,5)

Focus lies in Q3 and above y=1

  • Parabola is opening upwards

Then

Perpendicular distance

  • (5-1)=4

Find a for the equation

  • a=4/2=2

Now the equation is

[tex]\\ \rm\dashrightarrow 4a(y-k)=(x-h)^2[/tex]

[tex]\\ \rm\dashrightarrow 4(2)(y-5)=(x+4)^2[/tex]

[tex]\\ \rm\dashrightarrow 8(y-5)=x^2+8x+16[/tex]

[tex]\\ \rm\dashrightarrow 8y-40=x^2+8x+16[/tex]

[tex]\\ \rm\dashrightarrow 8y=x^2+8x+16+40[/tex]

[tex]\\ \rm\dashrightarrow 8y=x^2+8x+56[/tex]

[tex]\\ \rm\dashrightarrow y=\dfrac{x^2}{8}+x+7[/tex]

ACCESS MORE
EDU ACCESS