NO LINKS! Help me with this problem

[tex] {\qquad\qquad\huge\underline{{\sf Answer}}} [/tex]
Let's solve ~
Equation of directrix is : y = 1, so we can say that it's a parabola of form : -
[tex]\qquad \sf \dashrightarrow \: (x - h) {}^{2} = 4a(y - k)[/tex]
and since the focus is above the directrix, it's a parabola with upward opening.
[tex]\qquad \sf \dashrightarrow \: (x - ( - 4)) {}^{2} = 4(2)(y - 5)[/tex]
[tex]\qquad \sf \dashrightarrow \: (x + 4) {}^{2} = 8(y - 5)[/tex]
[tex]\qquad \sf \dashrightarrow \: {x}^{2} + 8x + 16 = 8y - 40[/tex]
[tex]\qquad \sf \dashrightarrow \: 8y = {x}^{2} + 8x + 56[/tex]
[tex]\qquad \sf \dashrightarrow \: y = \cfrac{1}{8} {x}^{2} + x + 7[/tex]
Directrix
Focus
Focus lies in Q3 and above y=1
Then
Perpendicular distance
Find a for the equation
Now the equation is
[tex]\\ \rm\dashrightarrow 4a(y-k)=(x-h)^2[/tex]
[tex]\\ \rm\dashrightarrow 4(2)(y-5)=(x+4)^2[/tex]
[tex]\\ \rm\dashrightarrow 8(y-5)=x^2+8x+16[/tex]
[tex]\\ \rm\dashrightarrow 8y-40=x^2+8x+16[/tex]
[tex]\\ \rm\dashrightarrow 8y=x^2+8x+16+40[/tex]
[tex]\\ \rm\dashrightarrow 8y=x^2+8x+56[/tex]
[tex]\\ \rm\dashrightarrow y=\dfrac{x^2}{8}+x+7[/tex]