Respuesta :

Answer:

No real roots

[tex]x = -2 + 4i, x = -2 - 4i[/tex]

Step-by-step explanation:

Hello!

We can solve the quadratic by using the Quadratic Formula.

Standard form of a Quadratic: [tex]ax^2 + bx + c = 0[/tex]

Quadratic Equation: [tex]x = \frac{-b\pm\sqrt{b^2 - 4ac}}{2a}[/tex]

Given our Equation: [tex]f(x) = x^2 + 4x + 20[/tex]

  • a = 1
  • b = 4
  • c = 20

Set the equation to 0 and solve using the formula.

Solve

  • [tex]x = \frac{-b\pm\sqrt{b^2 - 4ac}}{2a}[/tex]
  • [tex]x = \frac{-4\pm\sqrt{4^2 - 4(1)(20)}}{2(1)}[/tex]
  • [tex]x = \frac{-4\pm\sqrt{16 - 80}}{2}[/tex]
  • [tex]x = \frac{-4\pm\sqrt{-64}}{2}[/tex]
  • [tex]x = \frac{-4\pm8i}{2}[/tex]
  • [tex]x = -2 + 4i, x = -2 - 4i[/tex]

There are no real roots to the quadratic.

ACCESS MORE