The probability that battery lasts more than 3 years is [tex]e^{-0.6 }[/tex].
Parameter of Exponential Distribution
It is given that the average lifespan of the car battery = 5 years
⇒ μ = 5
And, we have to find the probability that the car battery lasts more than 3 years.
Now, the relation between the parameter of exponential distribution, λ and average, μ is given as,
1/ λ = μ
⇒ λ = 1/5
Calculating the Probability
The probability for the car battery to lasts more than 3 years is given by P(N>3). Here, N is the lifespan of the car battery.
P(N>3) = 1 - P(N≤3)
P(N>3) = 1-F(4)
Here, F is the exponential distribution for the lifespan of the car battery.
P(N>3) = 1-(1-e^(-λn))
P(N>3) = [tex]e^{-3/5}[/tex]
Thus, the required probability is,
P(N>3) = [tex]e^{-0.6 }[/tex]
Learn more about probability here:
https://brainly.com/question/11234923
#SPJ4