Respuesta :
In the electrolysis of water, 3490 hour will it take to produce 165.0 L of H2 at 1.0 atm and 273 K using an electrolytic cell through which the current is 113.0 mA.
What is Ideal Gas Law ?
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
It is expressed as
PV = nRT
where,
P = Pressure
V = Volume in liters
n = number of moles of gas
R = Ideal gas constant
T = Temperature in kelvin
Here,
P = 1.0 atm
V = 165.0 L
R = 0.0821 atm. L/mol.K (Ideal gas constant)
T = 273 K
n = ?
Now put the value in above expression, we get
PV = nRT
1.0 atm × 165.0 L = n × 0.0821 atm. L/mol.K × 273 K
165.0 atm. L = n × 22.4 atm. L/mol
[tex]n = \frac{165.0\ \text{atm. L}}{22.4\ \text{atm. L/mol}}[/tex]
n = 7.36 mol
The reaction is
2H⁺ + 2e⁻ → H₂
1 mol of electrons is produced from 96500 C
So,
[tex]96500 \frac{C}{\text{mol} \times e} \times 2e \times 7.36\ \text{mol}[/tex]
= 1,420,480 C
Convert milliampere to C/s
1mA = 0.001 C/s
113.0 mA = 113.0 × 0.001
= 0.113 c/s
What is relationship between current, charge and time ?
The relation between current, charge and time is expressed as:
[tex]I = \frac{Q}{t}[/tex]
where,
I = Current
Q = Charge in Coulomb
t = time
Now put the value in above formula we get
[tex]I = \frac{Q}{t}[/tex]
[tex]= \frac{1,420,480\ C}{0.113\ C/s}[/tex]
= 12,570,619.469 s
= 3490 hour
Thus from the above conclusion we can say that In the electrolysis of water, 3490 hour will it take to produce 165.0 L of H2 at 1.0 atm and 273 K using an electrolytic cell through which the current is 113.0 mA.
Learn more about the Ideal Gas Law here: https://brainly.com/question/25290815
#SPJ4