Respuesta :

The vertices of the parabolae are:

  1. (h, k) = (- 3, - 1)
  2. (h, k) = (1, - 9)
  3. (h, k) = (4, 1)
  4. (h, k) = (3/4, 9/4)
  5. (h, k) = (- 3, 2)
  6. (h, k) = (0, 36)
  7. (h, k) = (7/2, 9/4)
  8. (h, k) = (5, - 1)
  9. (h, k) = (1, - 3)
  10. (h, k) = (- 1/2, 1)

How to find the coordinates of the vertex of a parabola

Parabolae are represented by quadratic equations. In this problem we have parabolae in standard form and we need to determine its vertex form to find the needed information. Now we summarize the forms of quadratic equations:

Standard form

y = a · x² + b · x + c     (1)

Vertex form

y - k = C · (x - h)²     (2)

Please notice that (x, y) = (h, k) represents the vertex of the parabola.

To change quadratic equations from standard form into vertex form we need to apply algebraic handling:

y = x² + 6 · x + 8

y + 1 = x² + 6 · x + 9

y + 1 = (x + 3)²

(h, k) = (- 3, - 1)

y = x² - 2 · x - 8

y + 9 = x² - 2 · x + 1

y + 9 = (x - 1)²

(h, k) = (1, - 9)

y = - x² + 8 · x - 15

y = - 1 · (x² - 8 · x + 15)

y - 1 = - 1 · (x² - 8 · x + 16)

y - 1 = - 1 · (x - 4)²

(h, k) = (4, 1)

y = - 4 · x² + 6 · x

y = - 4 · [x² - (3/2) · x]

y + (- 4) · (9/16) = - 4 · [x² - (3/2) · x + 9/16]

y - 9/4 = - 4 · (x - 3/4)²

(h, k) = (3/4, 9/4)

y = x² + 6 · x + 11

y - 2 = x² + 6 · x + 9

y - 2 = (x + 3)²

(h, k) = (- 3, 2)

y = - x² + 36

y - 36 = - x²

(h, k) = (0, 36)

y = - x² + 7 · x - 10

y = - (x² - 7 · x + 10)

y + (- 1) · (9/4) = - (x² - 7 · x + 49/4)

y - 9/4 = - (x - 7/2)²

(h, k) = (7/2, 9/4)

y = x² - 10 · x + 24

y + 1 = x² - 10 · x + 25

y + 1 = (x - 5)²

(h, k) = (5, - 1)

y = 2 · x² - 4 · x - 1

y = 2 · (x² - 2 · x - 1/2)

y + 2 · (3/2) = 2 · (x² - 2 · x + 1)

y + 3 = 2 · (x - 1)²

(h, k) = (1, - 3)

y = - 4 · x² - 2 · x

y = - 4 · [x² + (1/2) · x]

y + (- 4) · (1/4) = - 4 · [x² + (1/2) · x + 1/4]

y - 1 = - 4 · (x + 1/2)²

(h, k) = (- 1/2, 1)

To learn more on parabolae: https://brainly.com/question/21685473

#SPJ1

ACCESS MORE