Respuesta :

Answer:

Step-by-step explanation:

The measure of an angle formed by a Secant and a tangent drawn from the outside point of a circle is half the difference of the intercepted arcs.

   [tex]\sf \angle E =\dfrac{arc \ CF - arc \ DF}{2}[/tex]

        [tex]\sf53 =\dfrac{arc \ CF-41}{2}[/tex]

  53*2  = arc CF - 41

   106    = arc CF - 41

106 + 41 = arc CF

   [tex]\sf \boxed{\bf \ arc \ CF = 147^\circ}[/tex]

9)  If two secants inside a circle, then the angle formed is equal to the half of the sum of intercepted arcs.

    [tex]\sf 5x - 7 = \dfrac{27+119}{2}\\\\ 5x - 7 = \dfrac{146}{2}[/tex]

   5x - 7  = 73

         5x = 73 + 7

         5x = 80

           x = 80/5

          [tex]\sf \boxed{\bf \ x = 16^\circ }[/tex]

 

ACCESS MORE