Answer:
[tex]\textsf{1.} \quad C^{-1}(F)=\dfrac{9}{5}F+32[/tex]
2. [-273.15, ∞)
Step-by-step explanation:
Given:
[tex]C=\dfrac{5}{9}(F-32), \quad \text{where }F \geq -459.67[/tex]
To find the inverse of the given function, make F the subject:
[tex]\begin{aligned}C & =\dfrac{5}{9}(F-32)\\\implies \dfrac{9}{5}C & =F-32\\\implies F & = \dfrac{9}{5}C+32 \end{aligned}[/tex]
[tex]\textsf{Replace the } F \textsf{ with }C^{-1}(F)\textsf{ and the }C \textsf{ with } F:[/tex] :
[tex]\implies C^{-1}(F)=\dfrac{9}{5}F+32[/tex]
Domain: set of all possible input values (x-values)
Range: set of all possible output values (y-values)
The given domain of the function C(F) is F ≥ -459.67
Therefore, the minimum value of the function is:
[tex]\implies C(-459.67)=\dffrac{5}{9}(-459.67-32)=-273.15[/tex]
This means the range of the function C(F) is C(F) ≥ -273.15
The domain of the inverse function is the range of the function.
Therefore, the domain of the inverse function in interval notation is: [-273.15, ∞)