jiujuan
contestada

MATH HELP!!! 100PTS!!!

Write the parametric equations

x=5sinθ,y=3cosθ,0≤θ≤π

in the given Cartesian form.

(y^2)/9=
with x≥0.

Respuesta :

Answer:

[tex]\dfrac{y^2}{9}=1-\dfrac{x^2}{25}[/tex]

Step-by-step explanation:

When converting parametric equations that involve trig functions to Cartesian equations, use trig identities to eliminate the parameter.

Given parametric equations:

[tex]x=5 \sin \theta, \quad y=3 \cos \theta, \quad 0\leq \theta\leq \pi[/tex]

Square the equation for x:

[tex]\implies x^2=(5 \sin \theta)^2=25 \sin^2 \theta[/tex]

Use the identity [tex]\sin^2 x+\cos^2x =1[/tex] to write [tex]x^2[/tex] in terms of cos:

[tex]\implies x^2=25(1-\cos^2 \theta)[/tex]

Isolate [tex]\cos^2 \theta[/tex] :

[tex]\implies \dfrac{x^2}{25}=1-\cos^2 \theta[/tex]

[tex]\implies \cos^2 \theta=1- \dfrac{x^2}{25}[/tex]

Square the equation for y:

[tex]\implies y^2=(3 \cos \theta)^2=9 \cos ^2 \theta[/tex]

Replace [tex]\cos^2 \theta[/tex] with the found equation involving [tex]x^2[/tex] :

[tex]\implies y^2=9\left(1-\dfrac{x^2}{25}\right)[/tex]

Divide both sides by 9:

[tex]\implies \dfrac{y^2}{9}=1-\dfrac{x^2}{25}, \quad \textsf{with }x\geq 0[/tex]

ACCESS MORE