Respuesta :
By simplifying the equation [tex]$\:sin\left(\frac{\pi }{2}-x\right)=\frac{1}{2}[/tex], we get [tex]$x= -2n\pi +\frac{\pi}{3}[/tex] and
[tex]$x= -2n\pi -\frac{\pi}{3}[/tex].
What are trigonometric Identities?
Trigonometric Identities exist as the equivalencies that apply trigonometry operations and have true for all the values of variables shown in the equation. There exist different trigonometric identities concerning the side length as nicely as the angle of a triangle.
How to simplify the equation [tex]$\:sin\left(\frac{\pi }{2}-x\right)=\frac{1}{2}[/tex]?
Given:
[tex]$\:sin\left(\frac{\pi }{2}-x\right)=\frac{1}{2}[/tex]
General solution for [tex]$\:sin\left(\frac{\pi }{2}-x\right)=\frac{1}{2}[/tex]
then from the general equation, we get
[tex]$\frac{\pi}{2}-x = \frac{\pi}{6}+2n\pi[/tex] and
[tex]$\frac{\pi}{2}-x = \frac{5\pi}{6}+2n\pi[/tex]
Solve [tex]$\frac{\pi}{2}-x = \frac{\pi}{6}+2n\pi[/tex] then [tex]$x= -2n\pi +\frac{\pi}{3}[/tex]
Solve [tex]$\frac{\pi}{2}-x = \frac{5\pi}{6}+2n\pi[/tex]then [tex]$x= -2n\pi -\frac{\pi}{3}[/tex]
Therefore, [tex]$x= -2n\pi +\frac{\pi}{3}[/tex] and [tex]$x= -2n\pi -\frac{\pi}{3}[/tex]
Radians, [tex]$x= -2n\pi +\frac{\pi}{3}[/tex] and [tex]$x= -2n\pi -\frac{\pi}{3}[/tex]
Degree, [tex]$x = 60 \degrees- 360\degree n[/tex], [tex]$x = -60\degree- 360\degree n[/tex]
By simplifying the equation [tex]$\:sin\left(\frac{\pi }{2}-x\right)=\frac{1}{2}[/tex], we get [tex]$x= -2n\pi +\frac{\pi}{3}[/tex] and
[tex]$x= -2n\pi -\frac{\pi}{3}[/tex].
To learn more about trigonometric Identities refer to:
https://brainly.com/question/7331447
#SPJ9