Respuesta :

The solutions to the quadratic equations are:

a) [tex]x = \frac{3 \pm \sqrt{19}}{5}[/tex]

b) x = -8, x = 5.

A quadratic function is given according to the following rule:

[tex]y = ax^2 + bx + c[/tex]

The solutions are:

[tex]x_1 = \frac{-b + \sqrt{\Delta}}{2a}[/tex]

[tex]x_2 = \frac{-b - \sqrt{\Delta}}{2a}[/tex]

In which:

[tex]\Delta = b^2 - 4ac[/tex]

Item a:

The coefficients are a = 5, b = -6, c = -2, hence:

  • [tex]\Delta = (-6)^2 - 4(5)(-2) = 76[/tex]
  • [tex]x_1 = \frac{6 + \sqrt{76}}{10} = \frac{6 + 2\sqrt{19}}{10} = \frac{3 + \sqrt{19}}{5}[/tex]
  • [tex]x_2 = \frac{6 - \sqrt{76}}{10} = \frac{6 - 2\sqrt{19}}{10} = \frac{3 - \sqrt{19}}{5}[/tex]

Item b:

The equation is:

x² + 3x = 40

x² + 3x - 40 = 0.

It can be simplified as follows:

(x - 5)(x + 8) = 0.

Hence the solutions are:

  • x - 5 = 0 -> x = 5.
  • x + 8 = 0 -> x = -8.

More can be learned about quadratic equations at https://brainly.com/question/24737967

#SPJ1

ACCESS MORE