Notice that
[tex]7^{2014} - 7^{2012} = 7^{2012} \bigg(7^2 - 1\bigg) = 7^{2012} \times 48 = 2^4 \times 3 \times 7^{2012}[/tex]
[tex]12=2^2\times3[/tex], so
[tex]\dfrac{7^{2014}-7^{2012}}{12} = 2^2 \times 7^{2012}[/tex]
Then taking the positive square root gives
[tex]\sqrt{\dfrac{7^{2014}-7^{2012}}{12}} = \sqrt{2^2 \times 7^{2012}} = 2\times7^{1006}[/tex]
so [tex]\boxed{a=2}[/tex] and [tex]\boxed{b=1006}[/tex].