Respuesta :

Answer:

Area of parallelogram = 9600 m²

Step-by-step explanation:

• We can find the measure of angle x using the cos rule:

[tex]160^2 = 100^2 +100^2 -2(100)(100) \cdot cos (x)[/tex]

Make x the subject of the equation:

⇒  [tex]20000 \cdot cos(x) = 100^2 +100^2 - 160^2[/tex]

⇒  [tex]cos(x) = -0.28[/tex]

⇒  [tex]x = cos^{-1} (-0.28)[/tex]

⇒  [tex]x = 106.26 \textdegree[/tex]

• Now we can find the area of one the triangles formed using the formula:

[tex]Area =\frac{1}{2} ab \cdot sin \theta[/tex]

where a and b are two sides of a triangle, and θ is the angle between them (angle x).

Substituting the values:

Area of one triangle = [tex]\frac{1}{2}[/tex]  × (100)(100) × sin(106.26°)

                             = 4800 m²

• Since the parallelogram is formed by two such triangles, we have to double the area of the triangle to find the parallelogram's area:

Area of parallelogram = 2 × 4800

                                     = 9600 m²

Ver imagen saadatk
ACCESS MORE