Respuesta :

Question 6

1) [tex]\overline{AB} \cong \overline{BD}[/tex], [tex]\overline{CD} \perp \overline{BD}[/tex], O is the midpoint of [tex]\overline{BD}[/tex], [tex]\overline{AB} \cong \overline{CD}[/tex] (given)

2) [tex]\angle ABO, \angle ODC[/tex] are right angles (perpendicular lines form right angles)

3) [tex]\triangle ABO, \triangle CDO[/tex] are right triangles (a triangle with a right angle is a right triangle)

4) [tex]\overline{BO} \cong \overline{OD}[/tex] (a midpoint splits a segment into two congruent parts)

5) [tex]\triangle ABO \cong \triangle CDO[/tex] (LL)

Question 7

1) [tex]\angle ADC, \angle BDC[/tex] are right angles), [tex]\overline{AD} \cong \overline{BD}[/tex]

2) [tex]\overline{CD} \cong \overline{CD}[/tex] (reflexive property)

3) [tex]\triangle CDA, \triangle CDB[/tex] are right triangles (a triangle with a right angle is a right triangle)

4) [tex]\triangle ADC \cong \triangle BDC[/tex] (LL)

5) [tex]\overline{AC} \cong \overline{BC}[/tex] (CPCTC)

Question 8

1) [tex]\overline{CD} \perp \overline{AB}[/tex], point D bisects [tex]\overline{AB}[/tex] (given)

2) [tex]\angle CDA, \angle CDB[/tex] are right angles (perpendicular lines form right angles)

3) [tex]\triangle CDA, \triangle CDB[/tex] are right triangles (a triangle with a right angle is a right triangle)

4) [tex]\overline{AD} \cong \overline{DB}[/tex] (definition of a bisector)

5) [tex]\overline{CD} \cong \overline{CD}[/tex] (reflexive property)

6)  [tex]\triangle ADC \cong \triangle BDC[/tex] (LL)

7) [tex]\angle ACD \cong \angle BCD[/tex] (CPCTC)

ACCESS MORE