Can someone help me on this pls? It’s urgent, so ASAP (it’s geometry)
Write formal proofs using HL Theorem.
![Can someone help me on this pls Its urgent so ASAP its geometry Write formal proofs using HL Theorem class=](https://us-static.z-dn.net/files/d27/1982d07f2bfee768a44c808fec08f563.png)
Question 2
1) [tex]\overline{PR} \perp \overline{QS}[/tex], [tex]\overline{PQ} \cong \overline{PS}[/tex] (given)
2) [tex]\overline{PR} \cong \overline{PR}[/tex] (reflexive property)
3) [tex]\angle PRQ[/tex] and [tex]\angle PRS[/tex] are right angles (perpendicular lines form right angles)
4) [tex]\triangle PRQ[/tex] and [tex]\triangle PRS[/tex] are right triangles (a triangle with a right angle is a right triangle)
5) [tex]\triangle PRQ \cong \triangle PRS[/tex] (HL)
Question 3
1) [tex]\angle C[/tex] is a right angle, [tex]\overline{AC} \cong \overline{AE}[/tex], [tex]\overline{DE} \perp \overline{AB}[/tex] (given)
2) [tex]\angle DEA[/tex] is a right angle (perpendicular lines form right angles)
3) [tex]\triangle ACD[/tex] and [tex]\triangle DAE[/tex] are right triangles (a triangle with a right triangle is a right angle)
4) [tex]\overline{AD} \cong \overline{AD}[/tex] (reflexive property)
5) [tex]\triangle ACD \cong \triangle AED[/tex] (HL)
6) [tex]\angle CAD \cong \angle DAE[/tex] (CPCTC)
7) [tex]\overline{AD}[/tex] bisects [tex]\angle BAC[/tex] (if a segment splits an angle into two congruent parts, it is an angle bisector)