Respuesta :

Answer:

  • a) AB = 10 units
  • b) Midpoint is (2, 6)

===================

Given

  • Points A( - 1, 10) and B(5, 2)

To find

  • a) The length of AB
  • b) The midpoint of AB

Solution

a) Use the distance formula:

[tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Substitute the coordinates and calculate:

[tex]d=\sqrt{(5-(-1))^2+(2-10)^2} =\sqrt{6^2+(-8)^2} =\sqrt{36+64} =\sqrt{100} =10[/tex]

The distance is AB = 10 units

b) Use midpoint formula and find x and y- coordinates of this point:

[tex]x= \cfrac{x_1+x_2}{2}[/tex]    and    [tex]y= \cfrac{y_1+y_2}{2}[/tex]

Substitute coordinates and find the midpoint:

[tex]x= \cfrac{-1+5}{2} =2[/tex]  and  [tex]y= \cfrac{10+2}{2}=6[/tex]

The midpoint is (2, 6)

Answer:

Length of line segment AB = 10 units

Midpoint of line segment AB = (2, 6)

Step-by-step explanation:

To find length, apply the distance formula :

  • AB = √(5 - (-1))² + (2 - 10)²
  • AB = √36 + 64 = √100
  • [tex]\fbox {AB = 10 units}[/tex]

To find the midpoint :

  • M = (-1 + 5 / 2, 10 + 2 / 2)
  • [tex]\fbox {Midpoint = (2, 6)}[/tex]
ACCESS MORE