The water outflow in 30 secs through 200 mm of the capillary tube is mathematically given as
[tex]Qo=1.6 \times 10^{2} \mathrm{~mL}[/tex]
[tex]\begin{aligned}\Delta P &=6660 \mathrm{~m} / \mathrm{m}^{2} \\\mu &=8.01 \times 10^{-4} \text { Pas } \\t &=30 \mathrm{~s} \\L &=200 \mathrm{~mm}=200 \times 10^{-3} \mathrm{~m} \\D &=1.5 \mathrm{~mm}=1.5 \times 10^{-3} \mathrm{~m} \Rightarrow \gamma=\frac{1.5 \times 10^{-3}}{2} \mathrm{~m}\end{aligned}[/tex]
Generally, the equation for Rate of flow of Liquid is mathematically given as
[tex]\\$Q=\frac{\pi r^{4} \times \Delta P}{8 \mu L}[/tex]
$
Where dP is pressure difference r is the radius
[tex]\mu[/tex] is the viscosity of water
L is the length of the pipe
[tex]Q=\frac{\pi \times\left(\frac{1.5 \times 10^{-3}}{2}\right)^{4} \times 6660}{8 \times 8.01 \times 10^{-4} \times 200 \times 10^{-3}}[/tex]
[tex]Q=5.2 \mathrm{~mL} / \mathrm{s}[/tex]
In $30s the quantity that flows out of the tube
[tex]&Qo=5.2 \times 30 \\&Qo=1.6 \times 10^{2} \mathrm{~mL}[/tex]
In conclusion, the quantity that flows out of the tube
[tex]Qo=1.6 \times 10^{2} \mathrm{~mL}[/tex]
Read more about the flows rate
https://brainly.com/question/27880305
#SPJ1