Respuesta :

Answer:

The graph of g(x) is wider.

Step-by-step explanation:

Parent function:

[tex]f(x)=x^2[/tex]

New function:

[tex]g(x)=\left(\dfrac{1}{2}x\right)^2=\dfrac{1}{4}x^2[/tex]

Transformations:

For a > 0

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]

[tex]\begin{aligned} y =a\:f(x) \implies & f(x) \: \textsf{stretched/compressed vertically by a factor of}\:a\\ & \textsf{If }a > 1 \textsf{ it is stretched by a factor of}\: a\\ & \textsf{If }0 < a < 1 \textsf{ it is compressed by a factor of}\: a\\\end{aligned}[/tex]

[tex]\begin{aligned} y=f(ax) \implies & f(x) \: \textsf{stretched/compressed horizontally by a factor of} \: a\\& \textsf{If }a > 1 \textsf{ it is compressed by a factor of}\: a\\ & \textsf{If }0 < a < 1 \textsf{ it is stretched by a factor of}\: a\\\end{aligned}[/tex]

If the parent function is shifted ¹/₄ unit up:

[tex]\implies g(x)=x^2+\dfrac{1}{4}[/tex]

If the parent function is shifted ¹/₄ unit down:

[tex]\implies g(x)=x^2-\dfrac{1}{4}[/tex]

If the parent function is compressed vertically by a factor of ¹/₄:

[tex]\implies g(x)=\dfrac{1}{4}x^2[/tex]

If the parent function is stretched horizontally by a factor of ¹/₂:

[tex]\implies g(x)=\left(\dfrac{1}{2}x\right)^2[/tex]

Therefore, a vertical compression and a horizontal stretch mean that the graph of g(x) is wider.

Ver imagen semsee45
ACCESS MORE