Math again yay!...Ew math
![Math again yayEw math class=](https://us-static.z-dn.net/files/da2/1f2ab598ba33a239f32ca7aa48548412.png)
Answer:
The graph of g(x) is wider.
Step-by-step explanation:
Parent function:
[tex]f(x)=x^2[/tex]
New function:
[tex]g(x)=\left(\dfrac{1}{2}x\right)^2=\dfrac{1}{4}x^2[/tex]
Transformations:
For a > 0
[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]
[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]
[tex]\begin{aligned} y =a\:f(x) \implies & f(x) \: \textsf{stretched/compressed vertically by a factor of}\:a\\ & \textsf{If }a > 1 \textsf{ it is stretched by a factor of}\: a\\ & \textsf{If }0 < a < 1 \textsf{ it is compressed by a factor of}\: a\\\end{aligned}[/tex]
[tex]\begin{aligned} y=f(ax) \implies & f(x) \: \textsf{stretched/compressed horizontally by a factor of} \: a\\& \textsf{If }a > 1 \textsf{ it is compressed by a factor of}\: a\\ & \textsf{If }0 < a < 1 \textsf{ it is stretched by a factor of}\: a\\\end{aligned}[/tex]
If the parent function is shifted ¹/₄ unit up:
[tex]\implies g(x)=x^2+\dfrac{1}{4}[/tex]
If the parent function is shifted ¹/₄ unit down:
[tex]\implies g(x)=x^2-\dfrac{1}{4}[/tex]
If the parent function is compressed vertically by a factor of ¹/₄:
[tex]\implies g(x)=\dfrac{1}{4}x^2[/tex]
If the parent function is stretched horizontally by a factor of ¹/₂:
[tex]\implies g(x)=\left(\dfrac{1}{2}x\right)^2[/tex]
Therefore, a vertical compression and a horizontal stretch mean that the graph of g(x) is wider.