Please help me out i will mark you brainlest
![Please help me out i will mark you brainlest class=](https://us-static.z-dn.net/files/dff/fd4f6d9dbb4d0f06add1da7548c5e049.png)
The appropriate values are; [tex]sin \theta = \frac{3\sqrt{10} }{10 }[/tex], [tex]cos\theta = -\frac{\sqrt{10} }{10}[/tex], [tex]cot\theta= -\frac{1}{3}[/tex], [tex]sec\theta=-\sqrt{10}[/tex] and [tex]csc\theta= \frac{\sqrt{10} }{3}[/tex].
Given the equation and interval.
tanθ = -3, [ π/2 < θ < π ]
First, we use the definition of tangent to determine the known sides of the unit circle right triangle.
Note that; the quadrant determines the sign of each values.
tanθ = opposite / hypotenuse
We can use Pythagoras theorem to find the hypotenuse of the unit circle right triangle as the opposite and adjacent sides are known.
Hypotenuse = √( opposite² + adjacent² )
Hence, we have;
Hypotenuse = √( [3]² + [-1]² )
Hypotenuse = √( 9 + 1 )
Hypotenuse = √10
1) To find sinθ
sinθ = opposite / hypotenuse
sinθ = 3/√10
We simplify
sinθ = 3/√10 × √10/√10
sinθ = 3√10 / 10
[tex]sin \theta = \frac{3\sqrt{10} }{10 }[/tex]
2) cosθ
cosθ = adjacent / hypotenuse
cosθ = -1 / √10
Simplify
cosθ = -1 / √10 × √10/√10
cosθ = -√10 / 10
[tex]cos\theta = -\frac{\sqrt{10} }{10}[/tex]
3) cotθ
cotθ = adjacent / opposite
cotθ = -1 / 3
[tex]cot\theta= -\frac{1}{3}[/tex]
4) secθ
secθ = hypotenuse / adjacent
secθ = √10 / -1
[tex]sec\theta=-\sqrt{10}[/tex]
5) cscθ
cscθ = hypotenuse / opposite
cscθ = √10 / 3
[tex]csc\theta= \frac{\sqrt{10} }{3}[/tex]
Therefore, the appropriate values are; [tex]sin \theta = \frac{3\sqrt{10} }{10 }[/tex], [tex]cos\theta = -\frac{\sqrt{10} }{10}[/tex], [tex]cot\theta= -\frac{1}{3}[/tex], [tex]sec\theta=-\sqrt{10}[/tex] and [tex]csc\theta= \frac{\sqrt{10} }{3}[/tex].
Learn more about trig ratios here: https://brainly.com/question/14977354
#SPJ1