The equation of the hyperbola is [tex]\frac{x^2}{4} -\frac{y^2}{12} = 1[/tex]
The points on the graph are given as:
The hyperbola can be represented as:
[tex]\frac{x^2}{b^2} -\frac{y^2}{a^2} = 1[/tex]
The points (2, 0) and (-2, 0) means that:
[tex]b = \±2[/tex]
Square both sides
[tex]b^2 = 4[/tex]
So, we have:
[tex]\frac{x^2}{4} -\frac{y^2}{a^2} = 1[/tex]
Also, we have:
a^2 = c^2 - b^2
Where c = 4
This gives
a^2 = 4^2 - 4
Evaluate
a^2 = 12
Substitute a^2 = 12 in [tex]\frac{x^2}{4} -\frac{y^2}{a^2} = 1[/tex]
[tex]\frac{x^2}{4} -\frac{y^2}{12} = 1[/tex]
Hence, the equation of the hyperbola is [tex]\frac{x^2}{4} -\frac{y^2}{12} = 1[/tex]
Read more about hyperbola at:
https://brainly.com/question/27799190
#SPJ1