Answer:
10 units squared
Step-by-step explanation:
Area of a triangle = 1/2 × base × height
Use the distance between two points formula to find the measure of the height and base of ΔXYZ.
Distance between two points
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]\textsf{where }(x_1,y_1) \textsf{ and }(x_2,y_2)\:\textsf{are the two points}[/tex]
Height of Triangle
Define the points:
- [tex]\textsf{Let }(x_1,y_1)=(2,1)[/tex]
- [tex]\textsf{Let }(x_2,y_2)=(4,5)[/tex]
Substitute the points into the distance formula to find the height of the triangle:
[tex]\begin{aligned}\implies \sf height & =\sqrt{(4-2)^2+(5-1)^2}\\& = \sqrt{2^2+4^2}\\& = \sqrt{20}\end{aligned}[/tex]
Base of Triangle
Define the points:
- [tex]\textsf{Let }(x_1,y_1)=(0,2)[/tex]
- [tex]\textsf{Let }(x_2,y_2)=(4,0)[/tex]
Substitute the points into the distance formula to find the height of the triangle:
[tex]\begin{aligned}\implies \sf base & =\sqrt{(4-0)^2+(0-2)^2}\\& = \sqrt{4^2+(-2)^2}\\& = \sqrt{20}\end{aligned}[/tex]
Area of Triangle
[tex]\begin{aligned}\implies \sf Area & = \dfrac{1}{2} \times \sf base \times height\\& = \dfrac{1}{2}\sqrt{20}\sqrt{20}\\& = \dfrac{1}{2}(20)\\& = 10 \sf \:\:units^2 \end{aligned}[/tex]