The height of AXYZ is the
distance from point Y to XZ
Find the area of the
triangle. Round your answer
to the nearest tenth, if
necessary. y(4,5) a(2,1) x(0,2) z(4,0)
pls help quick:(

The height of AXYZ is the distance from point Y to XZ Find the area of the triangle Round your answer to the nearest tenth if necessary y45 a21 x02 z40 pls help class=

Respuesta :

Answer:

areas of AXYZ=10 square units1

Answer:

10 units squared

Step-by-step explanation:

Area of a triangle = 1/2 × base × height

Use the distance between two points formula to find the measure of the height and base of ΔXYZ.

Distance between two points

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]\textsf{where }(x_1,y_1) \textsf{ and }(x_2,y_2)\:\textsf{are the two points}[/tex]

Height of Triangle

Define the points:

  • [tex]\textsf{Let }(x_1,y_1)=(2,1)[/tex]
  • [tex]\textsf{Let }(x_2,y_2)=(4,5)[/tex]

Substitute the points into the distance formula to find the height of the triangle:

[tex]\begin{aligned}\implies \sf height & =\sqrt{(4-2)^2+(5-1)^2}\\& = \sqrt{2^2+4^2}\\& = \sqrt{20}\end{aligned}[/tex]

Base of Triangle

Define the points:

  • [tex]\textsf{Let }(x_1,y_1)=(0,2)[/tex]
  • [tex]\textsf{Let }(x_2,y_2)=(4,0)[/tex]

Substitute the points into the distance formula to find the height of the triangle:

[tex]\begin{aligned}\implies \sf base & =\sqrt{(4-0)^2+(0-2)^2}\\& = \sqrt{4^2+(-2)^2}\\& = \sqrt{20}\end{aligned}[/tex]

Area of Triangle

[tex]\begin{aligned}\implies \sf Area & = \dfrac{1}{2} \times \sf base \times height\\& = \dfrac{1}{2}\sqrt{20}\sqrt{20}\\& = \dfrac{1}{2}(20)\\& = 10 \sf \:\:units^2 \end{aligned}[/tex]

ACCESS MORE