Respuesta :
force is mass multiply by acceleration so it will be 150 multiply by 10 is 1500N
Answer:
Acceleration: [tex]100\; {\rm m\cdot s^{-2}}[/tex] assuming that the radius of the rotation is [tex]1\; {\rm m}[/tex].
Centripetal force: [tex]15\; {\rm N}[/tex].
Explanation:
In a circular motion, if the tangential velocity is [tex]v[/tex] and the radius of the motion is [tex]r[/tex], the centripetal acceleration of the motion would be [tex]a = (v^{2} / r)[/tex].
In this question, it is implied that for this circular motion, [tex]v = 10\; {\rm m\cdot s^{-1}}[/tex] while [tex]r = 1\; {\rm m}[/tex]. Thus, the (centripetal) acceleration would be:
[tex]\begin{aligned} a &= \frac{v^{2}}{r} \\ &= \frac{(10\; {\rm m\cdot s^{-2}})^{2}}{1\; {\rm m}} \\ &= 100\; {\rm m \cdot s^{-2}}\end{aligned}[/tex].
Note that the unit of mass in this question is gram, whereas the standard unit for mass should be [tex]{\rm kg}[/tex] (so as to leverage the fact that [tex]1\; {\rm N} = 1\; {\rm kg \cdot m \cdot s^{-2}}[/tex].) Apply unit conversion: [tex]m = 150\; {\rm g} = 0.150\; {\rm kg}[/tex].
Using that fact that [tex](\text{net force}) = (\text{mass}) \, (\text{acceleration})[/tex]:
[tex]\begin{aligned} (\text{net force}) &= (\text{mass}) \, (\text{acceleration}) \\ &= 0.150\; {\rm kg} \times 100\; {\rm m\cdot s^{-2}} \\ &= 15\; {\rm kg \cdot m \cdot s^{-2}} \\ &= 15\; {\rm N}\end{aligned}[/tex].