Respuesta :

Step-by-step explanation:

Let assume that

Cost of 1 burger = $ x

Cost of 1 doughnuts = $ y

According to statement, 9 burgers and 1 doughnut cost $ 31.30

[tex]\begin{gathered}\sf \: 9x + y = 31.3 \\ \\ \end{gathered}[/tex]

[tex]\begin{gathered}\sf\implies \sf \: y = 31.3 - 9x - - - (1) \\ \\ \end{gathered}[/tex]

According to statement again, 3 doughnuts and 6 burgers cost $ 26.70

[tex]\begin{gathered}\sf \: 6x + 3y = 26.7 \\ \\ \end{gathered}[/tex]

[tex]\begin{gathered}\sf \: 3(2x + y) = 26.7 \\ \\ \end{gathered}[/tex]

[tex]\begin{gathered}\sf \: 2x + y = 8.9 \\ \\ \end{gathered}[/tex]

On substituting the value of y from equation (1), we get

[tex]\begin{gathered}\sf \: 2x + 31.3 - 9x = 8.9 \\ \\ \end{gathered}[/tex]

[tex]\begin{gathered}\sf \: 31.3 - 7x = 8.9 \\ \\ \end{gathered}[/tex]

[tex]\begin{gathered}\sf \: - 7x = 8.9 - 31.3 \\ \\ \end{gathered}[/tex]

[tex]\begin{gathered}\sf \: - 7x = - 22.4 \\ \\ \end{gathered}[/tex]

[tex]\begin{gathered}\bf\implies \: x = 3.2 \\ \\ \end{gathered}[/tex]

So,

Cost of 2 burgers = 3.2 × 2 = $ 6.4

[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]

  • 2 burgers cost $ 6.40

[tex]\textsf{ \underline{\underline{Steps to solve the problem} }:}[/tex]

We need to make linear equations, to solve this problem.

let the cost of each burger be x, and that of each doughnut be y.

[tex] \qquad❖ \: \sf \:9x + y = 31 .30[/tex]

[tex] \qquad❖ \: \sf \:y = (31 . 30 - 9x)[/tex]

put value of y in other equation.

[tex] \qquad❖ \: \sf \:6x + 3y = 26.70[/tex]

[tex] \qquad❖ \: \sf \:6x + 3(31.3 - 9x) = 26.70[/tex]

[tex] \qquad❖ \: \sf \:6x + 93.90 - 27x = 26.70[/tex]

[tex] \qquad❖ \: \sf \:6x - 27x = 26.70 - 93.90[/tex]

[tex] \qquad❖ \: \sf \:27x - 6x = 93.90 - 26.70[/tex]

[tex] \qquad❖ \: \sf \:21x =67 .20[/tex]

[tex] \qquad❖ \: \sf \:x = 67.20 \div 21[/tex]

[tex] \qquad❖ \: \sf \:x = 3.20[/tex]

So, cost of each burger is x = $ 3.20

[tex] \qquad \large \sf {Conclusion} : [/tex]

Therefore, cost of two burgers is :

  • 2 × 3.20 = $ 6.40