The regression equation of the table is y = 5.71x + 27.6
How to estimate the regression equation?
From the table of values, we have the following parameters:
[tex]\sum x = 1193[/tex]
[tex]\sum y = 6950[/tex]
[tex]\sum x^2 = 346337[/tex]
[tex]\sum xy = 2010500[/tex]
Calculate A using
[tex]A = \frac{\sum y * \sum x^2 - \sum x * \sum xy}{n\sum x^2 - (\sum x)^2}[/tex]
This gives
[tex]A = \frac{6950 * 346337 - 1193 * 2010500}{5 * 346337 - (1193)^2}[/tex]
Evaluate
[tex]A = \frac{8515650}{308436}[/tex]
Divide
A = 27.6
Calculate B using
[tex]B = \frac{n\sum xy - \sum x * \sum y}{n\sum x^2 - (\sum x)^2}[/tex]
This gives
[tex]B = \frac{5 * 2010500 - 1193 * 6950}{5 * 346337 - (1193)^2}[/tex]
Evaluate
[tex]B = \frac{1761150}{308436}[/tex]
Divide
B = 5.71
The regression equation is represented as:
y = Bx + A
So, we have
y = 5.71x + 27.6
Hence, the regression equation of the table is y = 5.71x + 27.6
Read more about regression equation at:
https://brainly.com/question/14184702
#SPJ1