prove that sin4a+2sin2acos2a+cos4a=1
![prove that sin4a2sin2acos2acos4a1 class=](https://us-static.z-dn.net/files/d60/2746e028a2e290afe8bb2ccf6406d9c5.jpg)
[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]
[tex]\textsf{ \underline{\underline{Steps to solve the problem} }:}[/tex]
[tex] \qquad❖ \: \sf \: \sin {}^{4} ( \alpha) + 2 \sin {}^{2} ( \alpha) \cos {}^{2} ( \alpha) + { \cos {}^{4} ( \alpha) }^{} [/tex]
[tex] \qquad❖ \: \sf \:( \sin {}^{2} ( \alpha) ) {}^{2} + 2( \sin {}^{2} ( \alpha))( \cos {}^{2} ( \alpha)) + {( \cos {}^{2} ( \alpha)) }^{} [/tex]
( use identity a² + 2ab + b² = (a + b)² )
[tex] \qquad❖ \: \sf \:( {\sin {}^{2}( { \alpha}) + \cos {}^{2} ( \alpha)) }^{2} [/tex]
( sin² x + cos ² x = 1 )
[tex] \qquad❖ \: \sf \: {1}^{2} [/tex]
[tex] \qquad❖ \: \sf \: {1}^{} [/tex]
[tex] \qquad \large \sf {Conclusion} : [/tex]
Value of that expression is 1