Respuesta :

Question 4

1) [tex]\overline{BD}[/tex] bisects [tex]\angle ABC[/tex], [tex]\overline{EF} \perp \overline{AB}[/tex], and [tex]\overline{EG} \perp \overline{BC}[/tex] (given)

2) [tex]\angle FBE \cong \angle GBE[/tex] (an angle bisector splits an angle into two congruent parts)

3) [tex]\angle BFE[/tex] and [tex]\angle BGE[/tex] are right angles (perpendicular lines form right angles)

4) [tex]\triangle BFE[/tex] and [tex]\triangle BGE[/tex] are right triangles (a triangle with a right angle is a right triangle)

5) [tex]\overline{BE} \cong \overline{BE}[/tex] (reflexive property)

6) [tex]\triangle BFE \cong \triangle BGE[/tex] (HA)

Question 5

1) [tex]\angle AXO[/tex] and [tex]\angle BYO[/tex] are right angles, [tex]\angle A \cong \angle B[/tex], [tex]O[/tex] is the midpoint of [tex]\overline{AB}[/tex] (given)

2) [tex]\triangle AXO[/tex] and [tex]\triangle BYO[/tex] are right triangles (a triangle with a right angle is a right triangle)

3) [tex]\overline{AO} \cong \overline{OB}[/tex] (a midpoint splits a segment into two congruent parts)

4) [tex]\triangle AXO \cong \triangle BYO[/tex] (HA)

5) [tex]\overline{OX} \cong \overline{OY}[/tex] (CPCTC)

Question 6

1) [tex]\angle B[/tex] and [tex]\angle D[/tex] are right angles, [tex]\overline{AC}[/tex] bisects [tex]\angle BAD[/tex] (given)

2) [tex]\overline{AC} \cong \overline{AC}[/tex] (reflexive property)

3) [tex]\angle BAC \cong \angle CAD[/tex] (an angle bisector splits an angle into two congruent parts)

4) [tex]\triangle BAC[/tex] and [tex]\triangle CAD[/tex] are right triangles (a triangle with a right angle is a right triangle)

5) [tex]\triangle BAC \cong \triangle DCA[/tex] (HA)

6) [tex]\angle BCA \cong \angle DCA[/tex] (CPCTC)

7) [tex]\overline{CA}[/tex] bisects [tex]\angle ACD[/tex] (if a segment splits an angle into two congruent parts, it is an angle bisector)

Question 7

1) [tex]\angle B[/tex] and [tex]\angle C[/tex] are right angles, [tex]\angle 4 \cong \angle 1[/tex] (given)

2) [tex]\triangle BAD[/tex] and [tex]\triangle CAD[/tex] are right triangles (definition of a right triangle)

3) [tex]\angle 1 \cong \angle 3[/tex] (vertical angles are congruent)

4) [tex]\angle 4 \cong \angle 3[/tex] (transitive property of congruence)

5) [tex]\overline{AD} \cong \overline{AD}[/tex] (reflexive property)

6) [tex]\therefore \triangle BAD \cong \triangle CAD[/tex] (HA theorem)

7) [tex]\angle BDA \cong \angle CDA[/tex] (CPCTC)

8) [tex]\therefore \vec{DA}[/tex] bisects [tex]\angle BDC[/tex] (definition of bisector of an angle)