Respuesta :

Using the Poisson distribution, the probabilities are given as follows:

  • [tex]P(X = 0) = e^{-10.6}[/tex]
  • [tex]P(X \geq 1) = 1 - e^{-10.6}[/tex]
  • [tex]P(X \leq 2) = 67.78e^{-10.6}[/tex]

What is the Poisson distribution?

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by:

[tex]P(X = x) = \frac{e^{-\mu}\mu^{x}}{(x)!}[/tex]

The parameters are:

  • x is the number of successes
  • e = 2.71828 is the Euler number
  • [tex]\mu[/tex] is the mean in the given interval.

The mean is given as follows:

[tex]\mu = 10.6[/tex]

Hence the probability of no dandelions in an area of 1 m² is P(X = 0), hence:

[tex]P(X = x) = \frac{e^{-\mu}\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-10.6}(10.6)^{0}}{(0)!} = e^{-10.6}[/tex]

The probability of at least one dandelion is:

[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - e^{-10.6}[/tex]

The probability of at most two dandelions is:

[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]

Then:

[tex]P(X = x) = \frac{e^{-\mu}\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-10.6}(10.6)^{0}}{(0)!} = e^{-10.6}[/tex]

[tex]P(X = 1) = \frac{e^{-10.6}(10.6)^{1}}{(1)!} = 10.6e^{-10.6}[/tex]

[tex]P(X = 2) = \frac{e^{-10.6}(10.6)^{2}}{(2)!} = 56.18e^{-10.6}[/tex]

[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = e^{-10.6} + 10.6e^{-10.6} + 56.18e^{-10.6} = 67.78e^{-10.6}[/tex]

More can be learned about the Poisson distribution at https://brainly.com/question/13971530

#SPJ1

ACCESS MORE