Respuesta :

Answer:

Option D

Step-by-step explanation:

  • y=-x²

This function has vertex at origin

Let's verify

Put (0,0)

  • 0=-(0)²
  • 0=-0
  • 0=0

Hence verified

Answer:

[tex]f(x)=-x^2[/tex]

Step-by-step explanation:

Vertex form of a quadratic function:

  [tex]y=a(x-h)^2+k[/tex]  

where:

  • (h, k) is the vertex
  • a is some constant
    If a > 0, the parabola opens upwards
    If a < 0, the parabola opens downwards

If the vertex is at the origin:

  • h = 0
  • k = 0

Substituting the vertex into the equation:

[tex]\implies y=a(x-0)^2+0[/tex]

[tex]\implies y= ax^2[/tex]

Comparing with the available answer options:

[tex]f(x)=-x^2[/tex]  has its vertex at the origin.

Additional Information:

[tex]\textsf{The vertex of }\:f(x)=(x+4)^2 \: \textsf{ is }\:(-4,0)[/tex]

[tex]\textsf{The vertex of }\:f(x)=x(x-4) \: \textsf{ is }\:(2,-4)[/tex]

[tex]\textsf{The vertex of }\:f(x)=(x-4)(x+4) \: \textsf{ is }\:(0,-16)[/tex]

Learn more about vertex form here:

https://brainly.com/question/27796555

Ver imagen semsee45
ACCESS MORE