Respuesta :

Answer:

33.55

Step-by-step explanation:

  • [tex]sin \alpha = \sqrt{11} \div 6 \\ [/tex]
  • [tex] \alpha = {sin}^{ - 1} 0.5527[/tex]
  • [tex] \alpha = 33.55[/tex]

Ver imagen jmadonye5

Answer:

α = 33.56°  (nearest hundredth)

Step-by-step explanation:

Trigonometric ratios

[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle
  • H is the hypotenuse (the side opposite the right angle)

Given:

  • [tex]\theta=\alpha[/tex]
  • O = [tex]\sf \sqrt{11}[/tex]
  • A = 5
  • H = 6

As all sides of the right triangle have been given, any of the trigonometric ratios can be used to find α.

Sine Ratio

[tex]\begin{aligned}\sf \sin(\alpha) & = \sf \dfrac{\sqrt{11}}{6}\\\implies \alpha & = \sf \sin^{-1}\left(\dfrac{\sqrt{11}}{6}\right) \\& = \sf 33.55730976...^{\circ}\end{aligned}[/tex]

Cosine Ratio

[tex]\begin{aligned}\sf \cos(\alpha) & =\sf \dfrac{5}{6}\\\implies \alpha & = \sf \cos^{-1}\left(\dfrac{5}{6}\right) \\& = \sf 33.55730976...^{\circ}\end{aligned}[/tex]

Tangent Ratio

[tex]\begin{aligned}\sf \tan(\alpha) & =\sf \dfrac{\sqrt{11}}{5}\\\implies \alpha & = \sf \tan^{-1}\left(\dfrac{\sqrt{11}}{5}\right) \\& = \sf 33.55730976...^{\circ}\end{aligned}[/tex]

Therefore, α = 33.56°  (nearest hundredth)

Learn more about trigonometric ratios here:

https://brainly.com/question/27803719

https://brainly.com/question/27744948

ACCESS MORE