Answer: [tex]\frac{3 +- \sqrt{23}i}{2}[/tex] If using complex numbers, or undefined if using all real numbers
Step-by-step explanation:
Moving -8 to the left side of the eq by adding both sides by 8=
x^2-3x+8=0
The quad formula:[tex]\frac{-b +- \sqrt{b^2-4ac}}{2a}[/tex]
a=1 b=-3 c=8
Inserting a b c values into formula: [tex]\frac{-(-3) +- \sqrt{(-3)^2-4(1)(8)}}{2(1)}[/tex]
Simplifying: [tex]\frac{3 +- \sqrt{9-32}}{2}[/tex]
[tex]\frac{3 +- \sqrt{-23}}{2}[/tex] Since the square root of a negative number doesn't exist in the set of real numbers, the equation is undefined.
OR
[tex]\frac{3 +- \sqrt{23}i}{2}[/tex] Using complex numbers i, to replace the negative number created by subtracting 9-32.