By "number of Power set of A" I wonder if you mean the cardinality of the power set.
For any finite set with [tex]n[/tex] elements, its power set contains [tex]2^n[/tex] elements.
Here [tex]|A| = 5[/tex], so the power set will contain [tex]|\mathcal P(A)| = 2^5 = \boxed{32}[/tex] elements.
Recall that the power set is the set of all subsets of a given set
• subsets of [tex]A[/tex] of size 0 (1):
[tex]\emptyset[/tex]
• subsets of size 1 (5):
[tex]\{a\}\\ \{b\}\\ \{\{a\}\}\\ \{3\}\\ \{\{3\}\}[/tex]
• subsets of size 2 (10):
[tex]\{a,b\}\\ \{a,\{a\}\}\\ \{a, 3\}\\ \{a, \{3\}\}\\ \{b,\{a\}\}\\ \{b,3\}\\ \{b,\{3\}\}\\ \{\{a\},3\}\\ \{\{a\}, \{3\}\}\\ \{3,\{3\}\}[/tex]
• subsets of size 3 (10):
[tex]\{a,b,\{a\}\}\\ \{a,b,3\}\\ \{a,b,\{3\}\}\\ \{a,\{a\},3\}\\ \{a,\{a\},\{3\}\} \\ \{a,3,\{3\}\}\\ \{b,\{a\},3\}\\ \{b,\{a\},\{3\}\}\\ \{\{a\},3,\{3\}\}[/tex]
• subsets of size 4 (5):
[tex]\{a,b,\{a\},3\}\\ \{a,b\{a\},\{3\}\}\\ \{a,b,3,\{3\}\}\\ \{a,\{a\},3,\{3\}\}\\ \{b,\{a\},3,\{3\}\}[/tex]
• subsets of size 5 (1):
[tex]\{a,b,\{a\},3,\{3\}\}[/tex]