Respuesta :

The exponential function is [tex]f(x) = 18(12)^{-x-4} + 2[/tex]

How to determine the equation?

An exponential function is represented as:

y = b^x

Where b represents the base.

The base is given as:

b = 12

So, we have:

y = (12)^x

It is vertically compressed by a factor of 1/8.

So, we have:

y = 18(12)^x

When reflected across the y-axis, we have:

[tex]y = 18(12)^{-x}[/tex]

The horizontal asymptote is y = 2.

So, we have:

[tex]y = 18(12)^{-x} + 2[/tex]

It passes through the point (-3, 4).

So, we shift the function to the right by 4 units

[tex]y = 18(12)^{-x-4} + 2[/tex]

Express as a function

[tex]f(x) = 18(12)^{-x-4} + 2[/tex]

Hence, the exponential function is [tex]f(x) = 18(12)^{-x-4} + 2[/tex]

Read more about exponential functions at:

https://brainly.com/question/14355665

#SPJ1