find the indefinite integral.
![find the indefinite integral class=](https://us-static.z-dn.net/files/df8/6eefaebf15e6f8855ebb42d852697bc7.jpg)
Using substitution, the result of the indefinite integral is:
[tex]3\ln{(1 + x^{\frac{1}{3}})} + C[/tex]
The integral is:
[tex]\int \frac{1}{x^{\frac{2}{3}}(1 + x^{\frac{1}{3}})} dx[/tex]
The substitution is:
[tex]u = 1 + x^{\frac{1}{3}}[/tex]
Then the derivative is:
[tex]du = \frac{1}{3}x^{-\frac{2}{3}} dx[/tex]
ttex]dx = 3dux^{-\frac{2}{3}}[/tex]
Hence the integral is:
[tex]\int \frac{1}{x^{\frac{2}{3}}(1 + x^{\frac{1}{3}})} dx[/tex]
[tex]\int \frac{1}{x^{\frac{2}{3}}u} \times 3dux^{-\frac{2}{3}}[/tex]
[tex]\int \frac{3du}{u}[/tex]
[tex]3\ln{u} + C[/tex]
Returning to x:
[tex]3\ln{(1 + x^{\frac{1}{3}})} + C[/tex]
More can be learned about integration by substitution at https://brainly.com/question/13058734
#SPJ1