Respuesta :

Using substitution, the result of the indefinite integral is:

[tex]3\ln{(1 + x^{\frac{1}{3}})} + C[/tex]

What is the integral?

The integral is:

[tex]\int \frac{1}{x^{\frac{2}{3}}(1 + x^{\frac{1}{3}})} dx[/tex]

The substitution is:

[tex]u = 1 + x^{\frac{1}{3}}[/tex]

Then the derivative is:

[tex]du = \frac{1}{3}x^{-\frac{2}{3}} dx[/tex]

ttex]dx = 3dux^{-\frac{2}{3}}[/tex]

Hence the integral is:

[tex]\int \frac{1}{x^{\frac{2}{3}}(1 + x^{\frac{1}{3}})} dx[/tex]

[tex]\int \frac{1}{x^{\frac{2}{3}}u} \times 3dux^{-\frac{2}{3}}[/tex]

[tex]\int \frac{3du}{u}[/tex]

[tex]3\ln{u} + C[/tex]

Returning to x:

[tex]3\ln{(1 + x^{\frac{1}{3}})} + C[/tex]

More can be learned about integration by substitution at https://brainly.com/question/13058734

#SPJ1