which two values of x are roots of the polynomial below?
x^2 + 5x + 9
![which two values of x are roots of the polynomial below x2 5x 9 class=](https://us-static.z-dn.net/files/d8c/72285155038c2ca42dbddfe28ba2b160.jpg)
Answer:
The answer:
A. [tex]x= \frac{-5+ \sqrt{-11} }{2}[/tex]
F.[tex]x= \frac{-5- \sqrt{-11} }{2}[/tex]
Step-by-step explanation:
Step 1: Solve with quadratic formula
Step 2: Simplify
Step 3: Separate the solution
Answer:
[tex]\large {\textsf{A and F}}\ \implies \bold{x_1}=\dfrac{-5-\sqrt{-11}}{2},\ \bold{x_2}=\dfrac{-5+\sqrt{-11}}{2}[/tex]
Step-by-step explanation:
Quadratic Formula: [tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Standard Form of a Quadratic Equation: ax² + bx + c = 0, where a ≠ 0.
Given polynomial: x² + 5x + 9
⇒ a = 1, b = 5, c = 9
Step 1: Rewrite to Standard Form.
⇒ x² + 5x + 9 = 0
Step 2: Substitute the values of a, b, and c into the formula.
⇒ a = 1, b = 5, c = 9
[tex]x=\dfrac{-5\pm\sqrt{\bold{5^2}-4\bold{(1)(9)}}}{\bold{2(1)}}\\\\x=\dfrac{-5\pm\sqrt{25\bold{\ - \ 4(9)}}}{2}\\\\x=\dfrac{-5\pm\sqrt{\bold{25-36}}}{2}\\\\x=\dfrac{-5\pm\sqrt{-11}}{2}[/tex]
Step 3: Separate into two possible cases.
[tex]x_1=\dfrac{-5-\sqrt{-11}}{2}\\\\x_2=\dfrac{-5+\sqrt{-11}}{2}[/tex]
Other examples:
brainly.com/question/27988150
brainly.com/question/27740685