The polynomial f(x) in expanded form is [tex]f(x) = x^3 - 3x^2 - 25x - 21[/tex]
The polynomial zeros are given as:
x = 7, x = -1 and x = -3
Rewrite as:
x - 7 = 0, x + 1 = 0 and x + 3 = 0
Multiply the zeros
f(x) = (x - 7)(x + 1)(x + 3)
Expand
[tex]f(x) = (x - 7)(x^2 + 4x + 3)[/tex]
Further, expand
[tex]f(x) = x^3 + 4x^2 - 7x^2 + 3x - 28x - 21[/tex]
Evaluate
[tex]f(x) = x^3 - 3x^2 - 25x - 21[/tex]
Hence, the polynomial f(x) in expanded form is [tex]f(x) = x^3 - 3x^2 - 25x - 21[/tex]
We have:
[tex]g(x) = \frac{f(x)}{x^2 - x- 2}[/tex]
This gives
[tex]g(x) = \frac{x^3 - 3x^2 - 25x - 21}{x^2 - x- 2}[/tex]
Expand the numerator
[tex]g(x) = \frac{x^3 - x^2 - 2x^2 - 2x + 2x - 25x + 4 - 25}{x^2 - x - 2}[/tex]
Rewrite as:
[tex]g(x) = \frac{x^3 - x^2 - 2x - 2x^2 + 2x + 4 - 25x - 25}{x^2 - x - 2}[/tex]
Factorize
[tex]g(x) = \frac{(x - 2)(x^2 - x- 2) - 25x - 25}{x^2 - x- 2}[/tex]
Evaluate the quotient
[tex]g(x) = x - 2 - \frac{25x + 25}{x^2 - x- 2}[/tex]
The slant asymptote is the quotient i.e. x - 2
Hence, the slant asymptote of the function g(x) is x - 2
In (b), we have:
[tex]g(x) = \frac{x^3 - 3x^2 - 25x - 21}{x^2 - x- 2}[/tex]
Set the denominator to 0
[tex]x^2 - x - 2 = 0[/tex]
Expand
[tex]x^2 + x - 2x - 2 = 0[/tex]
Factorize
x(x + 1) - 2(x + 1) = 0
Factor our x + 1
(x - 2)(x + 1) = 0
Solve for x
x = 2 or x = -1
2 is greater than -1.
So, the discontinuities and their types are:
Read more about polynomials at:
https://brainly.com/question/4142886
#SPJ1