Respuesta :

[tex] \sf{\qquad\qquad\huge\underline{{\sf Answer}}} [/tex]

Let's solve for z and x ~

[tex]\qquad \sf  \dashrightarrow \: 82 + z = 180[/tex]

[ they form co-interior angle pair ]

[tex]\qquad \sf  \dashrightarrow \: z = 180 - 82[/tex]

[tex]\qquad \sf  \dashrightarrow \: z = 98 \degree[/tex]

and

[tex]\qquad \sf  \dashrightarrow \: z = (5x - 82)[/tex]

[ by Alternate interior angle pair ]

[tex]\qquad \sf  \dashrightarrow \: 98 = 5x - 82[/tex]

[tex]\qquad \sf  \dashrightarrow \: 5x = 98 + 82[/tex]

[tex]\qquad \sf  \dashrightarrow \: 5x = 180[/tex]

[tex]\qquad \sf  \dashrightarrow \: x = 180 \div 5[/tex]

[tex]\qquad \sf  \dashrightarrow \: x = 36 \degree[/tex]

Answer:

z = 98

x= 36

Step-by-step explanation:

z + 82 = 180 -> due to same side interior angles adding up to 180

z = 180 - 82

z = 98

z = 5x - 82 due to opposite interior angles being equal

98 = 5x - 82

98+82 = 5x - 82+82

180 = 5x

180/5 = 5x/5

36 = x

To check:

z = 5x - 82

(98) = 5(36) - 82

98 = 180 - 82

RELAXING NOICE
Relax