Find (f • g) (x) Assume x>0

Answer:
[tex]\textsf{B.} \quad (f \cdot g)(x)=10x[/tex]
Step-by-step explanation:
Given:
[tex]\begin{cases}f(x)=\sqrt{50x}\\g(x)=\sqrt{2x}\end{cases}[/tex]
[tex]\begin{aligned}\textsf{As }(f \cdot g)(x) & = f(x) \cdot g(x)\\\implies (f \cdot g)(x)& = \sqrt{50x} \cdot \sqrt{2x}\end{aligned}[/tex]
[tex]\textsf{Apply radical rule} \quad \sqrt{a}\sqrt{b}=\sqrt{ab}:[/tex]
[tex]\begin{aligned}\implies (f \cdot g)(x) &= \sqrt{50x2x}\\& = \sqrt{100x^2}\end{aligned}[/tex]
Rewrite 100 as 10²:
[tex]\implies (f \cdot g)(x)=\sqrt{10^2x^2}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^bc^b=(ac)^b:[/tex]
[tex]\implies (f \cdot g)(x)= \sqrt{(10x)^2}[/tex]
[tex]\textsf{Apply radical rule} \quad \sqrt{a^2}=a, \quad a \geq 0:[/tex]
[tex]\implies (f \cdot g)(x)=10x[/tex]