Respuesta :

Answer:

The  value comes out to be  

[tex]x=\frac{1}{2}+\frac{\sqrt{17}}{2}[/tex]

Step-by-step explanation:

The quadratic equation is an equation containing a single variable of degree [tex]2[/tex]. Its general form is [tex]ax^{2} +bx + c=0[/tex].

The discriminant is the part of the quadratic formula underneath the square root symbol: b²- 4ac. The discriminant tells us whether there are two solutions, one solution, or no solutions.

The equation we are given is :[tex]x+4=x^{2} \\x^{2} -x-4=0\\[/tex]

We know the formula as :

[tex]x=[-b[/tex]±[tex]\sqrt{b^{2}-4ac}][/tex] ×[tex]\frac{1}{2a}[/tex]

[tex]x=[-(-1)[/tex]±[tex]\sqrt{(-1)^{2} -4(1)(-4)}][/tex]×[tex]\frac{1}{2(1)}[/tex]

[tex]x=\frac{1}{2}[/tex] ±[tex]\frac{\sqrt{17} }{2} }[/tex]

Since [tex]x[/tex]≥[tex]0[/tex]

Other negative option is neglected

[tex]x=\frac{1}{2}+\frac{\sqrt{17}}{2}[/tex]

Learn more about quadratic equations - https://brainly.com/question/1214333

#SPJ10

RELAXING NOICE
Relax