Answer:
The value comes out to be
[tex]x=\frac{1}{2}+\frac{\sqrt{17}}{2}[/tex]
Step-by-step explanation:
The quadratic equation is an equation containing a single variable of degree [tex]2[/tex]. Its general form is [tex]ax^{2} +bx + c=0[/tex].
The discriminant is the part of the quadratic formula underneath the square root symbol: b²- 4ac. The discriminant tells us whether there are two solutions, one solution, or no solutions.
The equation we are given is :[tex]x+4=x^{2} \\x^{2} -x-4=0\\[/tex]
We know the formula as :
[tex]x=[-b[/tex]±[tex]\sqrt{b^{2}-4ac}][/tex] ×[tex]\frac{1}{2a}[/tex]
[tex]x=[-(-1)[/tex]±[tex]\sqrt{(-1)^{2} -4(1)(-4)}][/tex]×[tex]\frac{1}{2(1)}[/tex]
[tex]x=\frac{1}{2}[/tex] ±[tex]\frac{\sqrt{17} }{2} }[/tex]
Since [tex]x[/tex]≥[tex]0[/tex]
Other negative option is neglected
[tex]x=\frac{1}{2}+\frac{\sqrt{17}}{2}[/tex]
Learn more about quadratic equations - https://brainly.com/question/1214333
#SPJ10