A star near the visible edge of a galaxy travels in a uniform circular orbit. It is 41,200 ly (light-years) from the galactic center and has a speed of 275 km/s. Estimate the total mass of the galaxy based on the motion of the star.
Gravitational constant is 6.674×10−11 m3/(kg·s2) and mass of the Sun Ms=1.99 × 1030 kg.
*Answer in billion solar mass

Respuesta :

The total mass of the galaxy is 443.4 Solar mass

Orbital velocity ([tex]v[/tex]) = [tex]\sqrt{\frac{MG}{R} }[/tex]

where M= weight of galaxy

G= gravitational constatnt = [tex]6.674*10^-^1^1[/tex] (given)

R = distance from centre = [tex]41200[/tex] Light years (given)= [tex]4.12*9.5*10^1^6[/tex]  km (1 ly= [tex]9.5*10^3[/tex] billion km)

v= orbital velocity = [tex]275[/tex]  [tex]km/s[/tex] (given)

∴ According to the formula

[tex](2.75*10^2)^2[/tex] = [tex]\frac{M*6.674*10^-^1^1}{4.12*9.5*10^1^6}[/tex]

⇒ [tex]7.56*10^4*4.12*9.5*10^1^6=M*6.674*10^-^1^1[/tex] (cross multiplying and expanding)

⇒ [tex]29.59*10^2^1=M*6.674*10^-^1^1[/tex]

⇒ [tex]\frac{29.59*10^2^1*10^1^1}{6.674}=M[/tex]

⇒ [tex]4.434*10^3^2=M[/tex]

1 solar mass = [tex]1.989*10^3^0 kg[/tex]

⇒ Mass in solar mass =443.4 Solar mass

⇒ M = 443.4 Solar mass

Learn more about Orbital velocity here :

https://brainly.com/question/22247460

#SPJ10

RELAXING NOICE
Relax