Respuesta :

Answer ya so  1 is the answer

Step-by-step explanation:

Ver imagen princegriffin2010

Answer:

1

Step-by-step explanation:

Given expression:

[tex]\sf \left(\dfrac{3a^{-2}b^6}{2a^{-1}b^5} \right)^2[/tex]

To find the value of the expression when a = 3 and b = -2, substitute these values into the expression:

[tex]\implies \sf \left(\dfrac{3(3)^{-2}(-2)^6}{2(3)^{-1}(-2)^5} \right)^2[/tex]

[tex]\textsf{Apply exponent rule} \quad a^{-n}=\dfrac{1}{a^n}[/tex]

[tex]\sf \implies \left(\dfrac{3\left(\dfrac{1}{3^2}\right)(-2)^6}{2\left(\dfrac{1}{3^1} \right)(-2)^5} \right)^2[/tex]

[tex]\sf \implies \left(\dfrac{3\left(\dfrac{1}{9}\right)(-2)^6}{2\left(\dfrac{1}{3} \right)(-2)^5} \right)^2[/tex]

[tex]\sf \implies \left(\dfrac{\left(\dfrac{3}{9}\right)(-2)^6}{\left(\dfrac{2}{3} \right)(-2)^5} \right)^2[/tex]

[tex]\sf \implies \left(\dfrac{\left(\dfrac{1}{3}\right)(-2)^6}{\left(\dfrac{2}{3} \right)(-2)^5} \right)^2[/tex]

[tex]\textsf{Apply exponent rule} \quad (-a)^n=a^n,\:\: \textsf{ if }n \textsf{ is even}[/tex]

[tex]\textsf{Apply exponent rule} \quad (-a)^n=-a^n,\:\: \textsf{ if }n \textsf{ is odd}[/tex]

[tex]\sf \implies \left(\dfrac{\left(\dfrac{1}{3}\right) (2^6)}{\left(\dfrac{2}{3} \right) (-(2^5))} \right)^2[/tex]

[tex]\sf \implies \left(\dfrac{\left(\dfrac{1}{3}\right) (64)}{\left(\dfrac{2}{3} \right) (-32)} \right)^2[/tex]

[tex]\sf \implies \left(\dfrac{\left(\dfrac{1 \times 64}{3}\right)}{\left(\dfrac{2 \times -32}{3} \right)} \right)^2[/tex]

[tex]\sf \implies \left(\dfrac{\dfrac{64}{3}}{\dfrac{-64}{3}} \right)^2[/tex]

When dividing fractions, flip the second fraction and multiply it by the first:

[tex]\implies \sf \left( \dfrac{64}{3} \times \dfrac {3}{-64} \right)^2[/tex]

[tex]\implies \sf \left( \dfrac{64 \times 3}{3 \times (-64)}\right)^2[/tex]

[tex]\implies \sf \left( \dfrac{192}{-192}\right)^2[/tex]

[tex]\implies \sf \left(-1\right)^2[/tex]

[tex]\textsf{Apply exponent rule} \quad (-a)^n=a^n,\:\: \textsf{ if }n \textsf{ is even}[/tex]

[tex]\sf \implies 1^2=1[/tex]

RELAXING NOICE
Relax