Respuesta :
The approximations of the mean and the standard deviation are 233.3 and 229.82, respectively
How to determine the mean?
The table of values is given as:
Savings Lower Limit Upper Limit Frequency
0-199 0 199 345
200-399 200 399 97
400-599 400 599 52
600-799 600 799 21
800-999 800 999 9
1000-1199 1000 1199 8
1200-1399 1200 1399 3
Rewrite the table to include the class midpoint and the frequency
x f
99.5 345
299.5 97
499.5 52
699.5 21
899.5 9
1099.5 8
1299.5 3
The mean is calculated as:
[tex]\bar x = \frac{\sum fx}{\sum f}[/tex]
So, we have:
[tex]\bar x = \frac{99.5* 345 + 299.5* 97 + 499.5* 52 + 699.5 * 21 + 899.5 * 9 + 1099.5 * 8 + 1299.5 * 3}{345 + 97 + 52 + 21 + 9 + 8 +3}[/tex]
Evaluate
[tex]\bar x = 233.331775701[/tex]
Approximate
[tex]\bar x = 233.3[/tex]
Hence, the approximation of the mean is 233.3
How to determine the standard deviation?
The standard deviation is calculated as:
[tex]\sigma = \sqrt{\frac{\sum f(x - \bar x)^2}{\sum f}}[/tex]
So, we have:
[tex]\sigma= \sqrt{\frac{(99.5-233.3)^2* 345 + (299.5-233.3)^2* 97 +...... + (1299.5 -233.3)^2* 3}{345 + 97 + 52 + 21 + 9 + 8 +3}[/tex]
Evaluate
[tex]\sigma = 229.82[/tex]
Hence, the approximation of the standard deviation is 229.82
Read more about mean and standard deviation at:
https://brainly.com/question/475676
#SPJ1
