Respuesta :

[tex] \sf{\qquad\qquad\huge\underline{{\sf Answer}}} [/tex]

Here we go ~

  • h = height of cone = 10 cm

  • r = radius of cone/sphere = ??

  • Volume of cone = 270 pi cm³

Volume of cone is :

[tex]\qquad \sf  \dashrightarrow \:v = 270 \pi[/tex]

[tex]\qquad \sf  \dashrightarrow \: \dfrac{1}{3} \cancel\pi {r}^{2} h = 270 \cancel\pi[/tex]

[tex]\qquad \sf  \dashrightarrow \:r {}^{2} \sdot10 = 270 \times 3[/tex]

[tex]\qquad \sf  \dashrightarrow \: {r}^{2} = 810 \div 10[/tex]

[tex]\qquad \sf  \dashrightarrow \: { {r}^{2} }^{} = 81[/tex]

[tex]\qquad \sf  \dashrightarrow \:r = \sqrt{81} [/tex]

[tex]\qquad \sf  \dashrightarrow \:r = 9 \: \: cm[/tex]

Now, let's calculate volume of solid sphere with same radius is ~

[tex]\qquad \sf  \dashrightarrow \:vol = \dfrac{4}{3} \pi {r}^{3} [/tex]

[tex]\qquad \sf  \dashrightarrow \:vol = \dfrac{4} {3} \sdot\pi \sdot {9}^{3} [/tex]

[tex]\qquad \sf  \dashrightarrow \:vol = \dfrac{4} {3} \sdot\pi \sdot 729[/tex]

[tex]\qquad \sf  \dashrightarrow \:vol = {4} {} \sdot243 \sdot\pi [/tex]

[tex]\qquad \sf  \dashrightarrow \:vol = 97 2\pi \: \: {cm}^{3} [/tex]

So, volume of the solid sphere in terms of pi is :

  • 972 pi cm³

note : the solid figure attached below the cone is a hemisphere, so if the volume of hemisphere is asked then just dovide the result for sphere by 2. that is :

  • 972pi / 2 = 486 pi cm³