Answer:
[tex]-5, \quad 3, \quad -4+i,\quad -4-i[/tex]
Step-by-step explanation:
Roots occur when f(x) = 0
[tex]\implies (x^2+2x-15)(x^2+8x+17)=0[/tex]
First trinomial
[tex]\implies (x^2+2x-15)=0[/tex]
[tex]\implies x^2+5x-3x-15=0[/tex]
[tex]\implies x(x+5)-3(x+5)=0[/tex]
[tex]\implies (x-3)(x+5)=0[/tex]
Therefore, roots are 3 and -5
Second trinomial
The second trinomial cannot be factored, so solve using the quadratic formula:
[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]
Given: [tex](x^2+8x+17)=0[/tex]
Therefore: a = 1, b = 8 and c = 17
[tex]\implies x=\dfrac{-8 \pm \sqrt{8^2-4(1)(17)}}{2(1)}[/tex]
[tex]\implies x=\dfrac{-8 \pm \sqrt{-4}}{2}[/tex]
[tex]\implies x=\dfrac{-8 \pm \sqrt{4}\sqrt{-1}}{2}[/tex]
[tex]\implies x=\dfrac{-8 \pm 2i}{2}[/tex]
[tex]\implies x=-4 \pm i[/tex]
So the roots of the second trinomial are -4 + i and -4 - i
Therefore, the complete list of roots for the given polynomial function are:
[tex]-5, \quad 3, \quad -4+i,\quad -4-i[/tex]