Respuesta :

The sum of the inverses of the solutions of the quadratic equation is equal to 2.75.

How to find the solutions of the quadratic equation?

Here we the quadratic equation:

0 = 5x^2 - 11x + 4

The solutions are given by Bhaskara's formula:

[tex]x = \frac{11 \pm \sqrt{(-11)^2 - 4*4*5} }{2*5} \\\\x = \frac{11 \pm \sqrt{41} }{10}\\\\[/tex]

So the two solutions are:

[tex]a = \frac{11 + \sqrt{41} }{10}\\\\\\b = \frac{11 - \sqrt{41} }{10}[/tex]

Then we have:

[tex]\frac{1}{a} + \frac{1}{b} = \frac{10}{11 + \sqrt{41} } + \frac{10}{11 - \sqrt{41} } \\\\= \frac{10*(11 + \sqrt{41} + 11 - \sqrt{41}) }{(11 + \sqrt{41})*(11 - \sqrt{41})} \\\\= \frac{10*(11 + 11 ) }{(11 + \sqrt{41})*(11 - \sqrt{41})}\\\\= \frac{220}{80} = 2.75[/tex]

If you want to learn more about parabolas:

https://brainly.com/question/4061870

#SPJ1

ACCESS MORE