A regular hexagon has an apothem of 14. 7 inches and a perimeter of 101. 8 inches. What is the area of the hexagon?.

Respuesta :

Answer:

748.23 in²

Step-by-step explanation:

Area of a Regular Polygon

[tex]\textsf{Area of a regular polygon}=\dfrac{n\:l\:a}{2}[/tex]

where:

  • n = number of sides
  • l = length of one side
  • a = apothem

Given:

  • n = 6
  • l = 101.8 ÷ 6
  • a = 14.7

Substituting the given values into the formula and solving for A:

[tex]\implies \textsf{A}=\dfrac{6 \cdot \dfrac{101.8}{6} \cdot 14.7}{2}[/tex]

[tex]\implies \sf A=\dfrac{101.8 \cdot 14.7}{2}[/tex]

[tex]\implies \sf A=\dfrac{1496.46}{2}[/tex]

[tex]\implies \sf A=748.23[/tex]

Therefore, the area of the hexagon is 748.23 in²