Respuesta :
Parent function
- y=x²
Now look the transformations
- y=(x-6)²
x is changed and shifted 6 units right
Then
- y=5(x-6)²
Horizontally Streched with a factor of 5
Answer:
B) The graph of k(x) is vertically stretched by a factor of 5 and shifted 6 units right.
Step-by-step explanation:
Translations
For a > 0
[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]
[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]
[tex]y=a\:f(x) \implies f(x) \: \textsf{stretched parallel to the y-axis (vertically) by a factor of}\:a[/tex]
[tex]y=f(ax) \implies f(x) \: \textsf{stretched parallel to the x-axis (horizontally) by a factor of} \: \dfrac{1}{a}[/tex]
Given functions:
[tex]f(x) = x^2[/tex]
[tex]k(x) = 5(x - 6)^2[/tex]
Parent function: [tex]f(x) = x^2[/tex]
Translated 6 units right: [tex]f(x-6)=(x-6)^2[/tex]
Then stretched vertically by a factor of 5: [tex]5f(x-6)=5(x-6)^2[/tex]
[tex]\implies 5f(x-6)=5(x-6)^2=k(x)[/tex]
Therefore, the graph of k(x) is vertically stretched by a factor of 5 and shifted 6 units right.
Learn more about translations here:
https://brainly.com/question/27845947
![Ver imagen semsee45](https://us-static.z-dn.net/files/df7/60bf4a91c998d7628ffdce37306a3342.png)