Respuesta :

  • The height of the tree is 16.78(2dp) feet

Step-by-step explanation:

Let x be the height of the tree. The length of shadow of tree is l=20 feet and elevation of sun is θ=400.

Then, tanθ=xlortan40=x20orx=20tan40=16.78(2dp)feet

HOPE ITS HELP

AND MARK ME AS BRAINLIST :)

Answer:

62.9 ft (nearest tenth)

Step-by-step explanation:

Use the tan trig ratio to calculate the length of the shadow.

Tan trigonometric ratio

[tex]\sf \tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle

Let x = length of shadow

Given:

  • [tex]\theta[/tex] = 50°
  • O = 75
  • A = x

Substitute the given values into the formula and solve for x:

[tex]\implies \sf \tan(50^{\circ})=\dfrac{75}{x}[/tex]

[tex]\implies \sf x=\dfrac{75}{\tan(50^{\circ})}[/tex]

[tex]\implies \sf x=62.93247234...[/tex]

Therefore, the length of the shadow is 62.9 ft (nearest tenth)

Ver imagen semsee45
ACCESS MORE