Respuesta :
Answer:
Current: [tex]10\; {\rm A}[/tex].
Energy consumed: [tex]2.376 \times 10^{7}\; {\rm J}[/tex].
Explanation:
Convert all values to standard units:
[tex]P = 2.2\; {\rm kW} = 2.2 \times 10^{3}\; {\rm W}[/tex].
[tex]V = 220\; {\rm V}[/tex].
[tex]t = 3\; {\rm hr} = 3 \times 3600\; {\rm s} = 10800\; {\rm s}[/tex].
The power consumption [tex]P[/tex] of an electric appliance is the product of:
- the voltage [tex]V[/tex] of this appliance, and
- the current [tex]A[/tex] going through this appliance.
In other words:
[tex]P = V\, A[/tex].
Rearrange this equation to find current [tex]A[/tex] in terms of power rating [tex]P[/tex] and voltage [tex]V[/tex]:
[tex]\begin{aligned}A &= \frac{P}{V}\end{aligned}[/tex].
In this question, it is given that [tex]P = 2.2 \times 10^{3}\; {\rm W}[/tex] while [tex]V = 220\; {\rm V}[/tex]. Thus, the current going through this appliance would be:
[tex]\begin{aligned}A &= \frac{P}{V} \\ &= \frac{2.2 \times 10^{3}\; {\rm W}}{220\; {\rm V}} \\ &= 10\; {\rm A}\end{aligned}[/tex].
The power rating of this appliance gives the amount of energy that this appliance consumes per unit time. The energy that this [tex]P = 2.2 \times 10^{3}\; {\rm W}[/tex] appliance would consume in [tex]t = 10800\; {\rm s}[/tex] would be:
[tex]\begin{aligned}E &= t\, P \\ &= (10800\; {\rm s}) \times (2.2 \times 10^{3}\; {\rm W}) \\ &= (10800\; {\rm s}) \times (2.2 \times 10^{3}\; {\rm J \cdot s^{-1}}) \\ &= 2.376 \times 10^{7}\; {\rm J}\end{aligned}[/tex].