Answer:
[tex]\textsf{A.} \quad \dfrac{1}{2}y^2=\ln|x|+x+1[/tex]
Step-by-step explanation:
To solve the differential equation:
Rearrange the given equation to get all the terms containing y on the left side, and all the terms containing x on the right side:
[tex]\dfrac{dy}{dx}=\dfrac{1+x}{xy}[/tex]
[tex]\implies y\dfrac{dy}{dx}=\dfrac{1+x}{x}[/tex]
[tex]\implies y\:dy=\dfrac{1+x}{x}\:dx[/tex]
[tex]\implies y\:dy=\dfrac{1}{x}+\dfrac{x}{x}\:dx[/tex]
[tex]\implies y\:dy=\left(\dfrac{1}{x}+1\right)\:dx[/tex]
Integrate both sides:
[tex]\displaystyle \implies \int y\:dy=\int \left(\dfrac{1}{x}+1\right)\:dx[/tex]
[tex]\implies \dfrac{1}{2}y^2=\ln|x|+x+C[/tex]
Find the value of C using the given values of x and y:
when x = 1, y = -2
[tex]\implies \dfrac{1}{2}(-2)^2=\ln|1|+1+C[/tex]
[tex]\implies 2=0+1+C[/tex]
[tex]\implies C=1[/tex]
Substitute the found value of C:
[tex]\implies \dfrac{1}{2}y^2=\ln|x|+x+1[/tex]