Respuesta :
-------------------------------------------------------------------------------------------------------------
Answer: [tex]\textsf{2i and -2i}[/tex]
-------------------------------------------------------------------------------------------------------------
Given: [tex]\textsf{x}^2\textsf{ + 4 = 0}[/tex]
Find: [tex]\textsf{The value of x}[/tex]
Solution: In order to find the value of x we must isolate x by itself and it will produce the result. In this case we need to subtract 4 from both sides and square root both sides in order to isolate x.
Subtract 4 from both sides
- [tex]\textsf{x}^2\textsf{ + 4 - 4 = 0 - 4}[/tex]
- [tex]\textsf{x}^2\textsf{ = 0 - 4}[/tex]
- [tex]\textsf{x}^2\textsf{ = - 4}[/tex]
Square root both sides
- [tex]\sqrt{\textsf{x}^2}\textsf{ = }\sqrt{\textsf{- 4}}[/tex]
- [tex]\textsf{x}\textsf{ = }\sqrt{\textsf{- 4}}[/tex]
- [tex]\textsf{x}\textsf{ = }\sqrt{\textsf{ 2}^2\textsf{ * (i)}^2}}[/tex]
- [tex]\textsf{x}\textsf{ = }\pm\textsf{2i}[/tex]
After completing all of the step we are able to determine that x is equal to both 2i and -2i.
Solution :
Given,
- x² + 4 = 0
Aim :
- To find value of x.
Inorder to calculate the value of x we would transpose the 4 which is in L.H.S. to R.H.S. (Remember that sign would be changed in negative).
>> x² = -4
>> √x² = √-4
>> x = ±2
Therefore,
- Value of x is 2 and -2.