Respuesta :

-------------------------------------------------------------------------------------------------------------

Answer:  [tex]\textsf{2i and -2i}[/tex]

-------------------------------------------------------------------------------------------------------------

Given:  [tex]\textsf{x}^2\textsf{ + 4 = 0}[/tex]

Find: [tex]\textsf{The value of x}[/tex]

Solution:  In order to find the value of x we must isolate x by itself and it will produce the result.  In this case we need to subtract 4 from both sides and square root both sides in order to isolate x.

Subtract 4 from both sides

  • [tex]\textsf{x}^2\textsf{ + 4 - 4 = 0 - 4}[/tex]
  • [tex]\textsf{x}^2\textsf{ = 0 - 4}[/tex]
  • [tex]\textsf{x}^2\textsf{ = - 4}[/tex]

Square root both sides

  • [tex]\sqrt{\textsf{x}^2}\textsf{ = }\sqrt{\textsf{- 4}}[/tex]
  • [tex]\textsf{x}\textsf{ = }\sqrt{\textsf{- 4}}[/tex]
  • [tex]\textsf{x}\textsf{ = }\sqrt{\textsf{ 2}^2\textsf{ * (i)}^2}}[/tex]
  • [tex]\textsf{x}\textsf{ = }\pm\textsf{2i}[/tex]

After completing all of the step we are able to determine that x is equal to both 2i and -2i.

Solution :

Given,

  • x² + 4 = 0

Aim :

  • To find value of x.

Inorder to calculate the value of x we would transpose the 4 which is in L.H.S. to R.H.S. (Remember that sign would be changed in negative).

>> x² = -4

>> √x² = √-4

>> x = ±2

Therefore,

  • Value of x is 2 and -2.